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Abstract
This paper is concerned with the group symmetries of the fourth Painlevé
equation PIV, a second-order nonlinear ordinary differential equation. It is
well known that the parameter space of PIV admits the action of the extended
affine Weyl group Ã

(1)
2 . As shown by Noumi and Yamada, the action of Ã

(1)
2

as Bäcklund transformations of PIV provides a derivation of its symmetric
form SP4. The dynamical system SP4 is also equivalent to the isomonodromic
deformation of an associated three-by-three matrix linear system (Lax pair).
The action of the generators of Ã

(1)
2 on this Lax pair is derived using the

Darboux transformation for an associated third-order operator.

PACS numbers: 02.30.Hq, 02.30.−f, 02.30.Gp

1. Ã
(1)
2 symmetry and SP4

Around the beginning of the 20th century Painlevé and his colleagues sought to classify all
second-order ordinary differential equations (ODEs) of the form

d2η

dζ 2
= R

(
ζ, η,

dη

dζ

)
,

having the Painlevé property, which is that their general solutions are absent of movable critical
points, see [23] and [4, 11, 15, 16, 20, 29] also. Of the 50 generic types, 6 are not solvable in
terms of previously known functions and are now known as the Painlevé equations, which we
shall label PI–PVI, respectively. Our concern is with PIV,

PIV:
d2η

dζ 2
= 1

2η

(
dη

dζ

)2

+
3

2
η3 + 4ζη2 + 2η(ζ 2 − α) +

β

η
, (1.1)

where α, β ∈ C. The Painlevé equations have experienced a renaissance since the discovery
of the inverse scattering transform [19]. The revival in interest is due to the fact that PI–PVI
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are all symmetry reductions of completely integrable partial differential equations [1, 2, 7].
For example, the Boussinesq equation

Utt + 2
3 (U 2)xx + 1

3Uxxxx = 0 (1.2)

has solutions expressible in terms of PIV via the symmetry reduction

U(x, t) = − 1

4t

[
9

2

(
dη

dζ
+ η2 + 2ζη

)
+ 7ζ 2 − 3(α − 1)

]
, ζ = 31/2

2
xt−1/2,

see [10]. Furthermore, (1.2) is considered to be a completely integrable partial differential
equation as it can be derived from the following Lax pair:

Lψ = λψ, L = ∂3
x + U(x, t)∂x + V (x, t),

ψt = Mψ, M = ∂2
x + W(x, t),

(1.3)

see [39]. As well as their physical applications the Painlevé equations have many mathematical
properties, of which we are mainly concerned with Lax pairs [1, 12, 19] and Bäcklund
transformations (BTs) [4, 8, 13, 14, 20, 21, 26, 27, 35].

From the works of Okamoto [35], it is known that the parameter space of PII–PVI all admit
the action of an extended affine Weyl group—specifically the group acts as a group of BTs.
In the case of PIV the group is Ã

(1)
2 , see definition 2.1. This idea has been applied in a series

of recent articles [31–34] by Noumi and Yamada to rederive the symmetric form of PIV,

df0

dx
= f0(f1 − f2) + α0, (1.4a)

SP4:
df1

dx
= f1(f2 − f0) + α1, (1.4b)

df2

dx
= f2(f0 − f1) + α2. (1.4c)

From here on we shall use x to denote the independent variable in SP4, which should not
be confused with the spatial variable of the Boussinesq equation. SP4 is the first member
of a hierarchy of symmetric dynamical systems related to Ã

(1)
N ,N � 2, also containing the

symmetric form of PV (SP5) associated with Ã
(1)
3 . Recasting PIV and PV into their symmetric

forms allows one to understand their group symmetries naturally. Although SP4 was known
to Bureau [6], and both SP4 and SP5 to Adler [3], as alternative representations of these
ODEs, they were never exploited to understand these group symmetries. Up to a scaling of
the variables, SP4 is equivalent to PIV in any of the unknown functions fj . For example, first
scaling the system

fj = (−1/2)1/2ηj (ζ ), x − x0 = (−2)1/2ζ, j = 0, 1, 2,

for arbitrary x0 ∈ C and then eliminating η1 and η2 gives

η0 satisfies PIV: α = α1 − α2, β = −2α2
0 . (1.5)

Similar results for η1 and η2 can be calculated using (1.5) and the permutation symmetry of
SP4, thus working with SP4 is equivalent to working with three copies of PIV simultaneously.
The symmetries of PIV are encompassed in the general framework of the extended affine Weyl
group Ã

(1)
2 , which acts on SP4 as a group of BTs, see theorem 2.1.

We wish to understand the group symmetries of SP4 on the level of its associated Lax pair
by implementing the Darboux transformation (DT) methodology, see [25] and [3, 9, 22, 37, 38].
In general terms, any coupled system of linear matrix ODEs of the form

Ψz(x, z; v) = M̃(x, z; v)Ψ(x, z; v), (1.6a)



Darboux transformations and the symmetric fourth Painlevé equation 9753

Ψx(x, z; v) = L(x, z; v)Ψ(x, z; v), (1.6b)

where Ψ is a vector of eigenfunctions, v is a vector of parameters and M̃, L, are square
matrices, is known as a Lax pair. One can associate with each Lax pair a nonlinear differential
equation in the following way: imposing the compatibility condition Ψxz = Ψzx yields the
zero curvature equation

∂M̃
∂x

− ∂L
∂z

+ [M̃, L] = 0. (1.7)

For a suitable choice of M̃ and L, (1.7) is equivalent to a nonlinear differential equation. In
[26], a sl(2, C) Lax pair was used to study PIV. However, as Ã

(1)
2 is the affine Weyl group

of sl(3, C) the group symmetries of PIV are not explicit. For this reason, we approach PIV

by studying the Lax pair of SP4 instead. To be consistent with [34], we slightly modify the
general Lax pair above, so rather than M̃ we shall use M = zM̃, giving the following Lax
matrices for SP4:

M = −

 v1 f1 1

z v2 f2

zf0 z v3


 , L = −


g1 1 0

0 g2 1
z 0 g3


 , (1.8)

where fj = fj (x), gj = gj (x), v = (v1, v2, v3)
T , vj ∈ C and Ψ = (ψ1, ψ2, ψ3)

T . A routine
calculation shows that substituting (1.8) into (1.7) gives SP4 along with the following relations:

α0 = 1 − v1 + v3, α1 = v1 − v2, α2 = v2 − v3, (1.9a)

g1 = x

3
− f2, g2 = x

3
− f0, g3 = x

3
− f1. (1.9b)

We can choose the normalization tr(M) = tr(L) = 0, since this choice of gauge does not
affect SP4.

The remainder of this paper unfolds as follows: in section 2 we give a formal definition of
Ã

(1)
2 and how it acts on SP4, as presented in [31]. A detailed discussion of gauge transformations

corresponding to various elements of Ã
(1)
2 is also presented. The first example of such a gauge

transformation is derived in section 3, together with the analysis of a specific gauged system.
Using the results at the end of section 3 and the tools developed in section 2, several DTs
of (1.6) are calculated in section 4. The DTs given in section 4 are combined to derive a
new Schlesinger transformation (ST) of PIV, see [28], as well as then being ‘decomposed’
in section 5 to derive theorem 5.1. The main results and open problems are summarized in
section 6.

Note to the reader. In this paper, we shall adopt the opposite convention to that used by
Noumi and Yamada in [30], see also [31–34]: we use right actions of the affine Weyl group
Ã

(1)
2 throughout where they use left actions instead; consult the presentation of Ã

(1)
2 given in

section 2.

2. Ã(1)
2 and Lax pairs

The symmetric forms presented in [31] were derived by considering the following problem:
‘for a general affine root system, find a class of nonlinear differential (or difference) equations
on which the affine Weyl group acts as a group of BTs’. The case of Ã

(1)
N ,N � 2, gave rise to

the hierarchy of differential systems which contain SP4 and SP5 as the first two members. The
rest of this section is concerned with the formal definition of Ã

(1)
2 , together with a thorough
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discussion of how one would apply gauge transformations associated with the generators of
Ã

(1)
2 to a given Lax pair. Note that the discussion pertaining to Lax pairs is completely general

and is not restricted to the three-by-three Lax pair for SP4.

Definition 2.1. The extended affine Weyl group Ã
(1)
2 = 〈s0, s1, s2, π〉 is defined by the

fundamental relations

si
2 = I, (sisj )

3 = I, j = i ± 1, (sisj )
2 = I, j �= i, i ± 1, (2.1a)

π3 = I, (2.1b)

siπ = πsi+1, i = 0, 1, 2. (2.1c)

With this definition in place we now formalize the relation between Ã
(1)
2 and the BTs

of SP4.

Theorem 2.1 ([31]). The BTs of SP4 generated by Ã
(1)
2 is defined by the fundamental relations

(2.1) and realized as a group of automorphisms of the field of rational functions C(αj , fj ) as
follows:

si(αi) = −αi, si(αj ) = αj + αi, j = i ± 1, (2.2a)

si(fi) = fi, si(fj ) = fj ± αi

fi

, j = i ± 1, (2.2b)

π(αj ) = αj+1, π(fj ) = fj+1, j = 0, 1, 2. (2.2c)

Trivial actions are not presented and group elements act from the right, so we shall interpret
πsi+1 as apply π first and then si+1—this convention will be used throughout. Note that this is
the opposite convention to the one taken by Noumi and Yamada, who use left actions [30–34].
It is also worth noting that the action of the Weyl group on the space of solutions of SP4 is
dual to the action on the variables, see the discussion in appendix A.4 in [30].

A natural question to ask would be: how does Ã
(1)
2 act on the Lax pair (1.6) of SP4?

Or equivalently, consider the following problem: derive a set of matrix transformations
corresponding to each of the generators of Ã

(1)
2 such that when they are applied to Ψ(z, fj ; v),

this results in the action of that generator on each entry of L(z, fj ; v) and M(z, fj ; v).
(We have denoted the dependence on x implicitly through the variables fj for the current
discussion.) Furthermore, given a set of matrix transformations representing the action of
the generators of Ã

(1)
2 , we are then faced with the next problem: how does one multiply

these matrix transformations together? This may seem of little importance at the moment,
but it transpires to be a crucial point for the following reason: it is plausible that the matrix
transformations in question may have dependences on elements such as αi or fi . If true, then
a sense of order of application of elements belonging to Ã

(1)
2 is essential as the entries of these

matrix transformations will change too, see theorem 2.1.
For the sake of the immediate argument assume that aj are particular elements of the

extended affine Weyl group Ã
(1)
2 whose fundamental relations are governed by (2.1). Assume

also that the action of the individual group elements is defined by (2.2). (Examples of aj

would be π or sj .) The action of the element a1, say, on the Lax pair will be interpreted as the
outcome of a1 on every entry of the Lax pair. Define the action of the element a1 on the Lax
pair as

a1(Ψ(z, fj ; v)) := Ψ(z, a1(fj ); a1(v)), (2.3a)

a1(M(z, fj ; v)) := M(z, a1(fj ); a1(v)), (2.3b)
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a1(L(z, fj ; v)) := L(z, a1(fj ); a1(v)). (2.3c)

Now assume that we have a transformation matrix A1(z, fj ; v) which when applied to
Ψ(z, fj ; v), see (2.5), gives the action of the element a1 defined by (2.3). The transformed
Lax pair is

z[a1(Ψ(z, fj ; v))]z = a1(M(z, fj ; v))a1(Ψ(z, fj ; v)), (2.4a)

[a1(Ψ(z, fj ; v))]x = a1(L(z, fj ; v))a1(Ψ(z, fj ; v)), (2.4b)

which we obtain as follows: letting A1(z, fj ; v) act on Ψ(z, fj ; v)

a1(Ψ(z, fj ; v)) = Ψ(z, a1(fj ); a1(v)) = A1(z, fj ; v)Ψ(z, fj ; v), (2.5)

the Lax pair (2.4) is calculated by differentiating (2.5) with respect to both x and z and then
substituting (1.6), giving

a1(M(z, fj ; v)) = z
∂A1

∂z
A1

−1 + A1MA1
−1, (2.6a)

a1(L(z, fj ; v)) = ∂A1

∂x
A1

−1 + A1LA1
−1. (2.6b)

Equations (2.5) and (2.6) represent what is meant by applying the group element a1 on
Ψ(z, fj ; v), L(z, fj ; v), M(z, fj ; v), defined by (2.3).

Now let us consider how one applies the group element a2 on Ψ(z, fj ; v) followed by
another element, say a1. In other words, we wish to derive a matrix transformation which
when applied to Ψ(z, fj ; v) gives the action corresponding to the product of the elements a1

and a2, that is a2a1 in Ã
(1)
2 , on each entry of L(z, fj ; v) and M(z, fj ; v). (Recall that this is a

right action.) It transpires that this matrix is not simply given by the product of the separate
matrices corresponding to a1 and a2 and then acting it on Ψ(z, fj ; v) in the sense of (2.5).

Define the action of the multiplication of the group elements a1 and a2, a2a1, on the Lax
pair as

a2a1(Ψ(z, fj ; v)) := Ψ(z, a2a1(fj ); a2a1(v)), (2.7a)

a2a1(M(z, fj ; v)) := M(z, a2a1(fj ); a2a1(v)), (2.7b)

a2a1(L(z, fj ; v)) := L(z, a2a1(fj ); a2a1(v)). (2.7c)

The transformed Lax pair is thus

z[a2a1(Ψ(z, fj ; v))]z = a2a1(M(z, fj ; v))a2a1(Ψ(z, fj ; v)),

[a2a1(Ψ(z, fj ; v))]
x

= a2a1(L(z, fj ; v))a2a1(Ψ(z, fj ; v)),

which is obtained in the following way. Consider the action of the element a2a1 on the matrix
differential operator ∂x − L. From the derivation of (2.6b), we have

a2(∂x − L) = A2(∂x − L)A2
−1,

and therefore

∂x − (a2a1)(L) = a1(∂x − a2(L))

= a1(A2)(∂x − a1(L))a1(A2)
−1

= a1(A2)A1(∂x − L)A1
−1a1(A2)

−1.
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The corresponding derivation for M is analogous that for L. (We are grateful to the referee
for the elegant derivation above.) Hence, we arrive at the formula

a2a1(Ψ(z, fj ; v)) = A2(z, a1(fj ); a1(v))A1(z, fj ; v)Ψ(z, fj ; v). (2.8)

Substituting A2(z, a1(fj ); a1(v))A1(z, fj ; v) as the transformation matrix into (2.6)
multiplying Ψ(z, fj ; v) will give the Lax matrices M(z, a2a1(fj ); a2a1(v)) and L(z, a2a1(fj );
a2a1(v)). These formulae will be used repeatedly to calculate Lax pairs transformed by
elements of Ã

(1)
2 in section 4.

A few comments: the group Ã
(1)
2 acts on the Lax pair via transformations of Ψ(z, fj ; v)

of the form (2.5), commonly known as a gauge transformation. These gauge transformations
are special in that when acted on Ψ(z, fj ; v) via (2.5), the corresponding action of the element
of Ã

(1)
2 is realized on the entries of L(z, fj ; v) and M(z, fj ; v). We are able to act Ã

(1)
2 on

the Lax pair to derive transformed Lax pairs such as (2.3) and (2.7). Multiplying elements of
Ã

(1)
2 on the level of their associated transformation matrices has the added intricacy appearing

in (2.8). In contrast to a linear representation ρ of a group where ρ(a2a1) = ρ(a2)ρ(a1),
here one has to apply the action of the second element a1 to the first transformation matrix
A2 before multiplying them together. If the matrices have entries such as αj or fj , then the
transformations must also change accordingly.

In the next section, we build up the tools required to derive the gauge transformations
described above. An associated gauged system proves to be vital to the ensuing calculations
and so it is also studied in detail.

3. π symmetry and a gauged system

The current section is comprised of two parts—in the first, we derive the gauge transformation
associated with the generator π . In the second, we focus our attention on the operator L1. The
gauged system in the variables Φ = (φ1, φ2, φ3)

T = (ψ1, ψ1,x , ψ1,xx)
T is intimately related to

L1 which is the third-order Lax operator for the Boussinesq equation (1.3). Studying the action
of the generators of Ã

(1)
2 on L1 allows one to then construct DTs of (1.6) via Φ. The method

used in section 4 is based on the idea of altering the factorization of operators [17, 18]—in
its simplest form different factorizations of an operator correspond to different eigenfunctions.
As we shall see in the next section, using the BTs of SP4 given in theorem 2.1, altering the
factorization of operators provides a systematic method of generating DTs corresponding to
the action of these group elements.

Begin by rewriting (1.6b) as the following system of equations:

(∂x + g1)ψ1 = −ψ2, (3.1a)

(∂x + g2)ψ2 = −ψ3, (3.1b)

(∂x + g3)ψ3 = −zψ1. (3.1c)

One may reduce (3.1) to a single third-order operator acting on any one of ψ1, ψ2, or ψ3.
Substituting ψ3 and ψ2 using (3.1b) and (3.1a) into (3.1c) gives

L1ψ1 = zψ1, L1 = −(∂x + g3)(∂x + g2)(∂x + g1). (3.2a)

Similar expressions for L2ψ2 = zψ2 and L3ψ3 = zψ3 are given by simply permuting the
indices of (3.2a), explicitly

L2 = π(L1), L3 = π(L2) = π2(L1), (3.2b)
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emphasis is placed on the fact that the factorization Lj corresponds to the eigenfunction ψj .
To determine a set of transformations on ψj which gives the action of the generator π , using
(3.1), we set

π(ψ1) = −F(∂x + g1)ψ1, (3.3a)

π2(ψ1) = −F(∂x + g2)π(ψ1), (3.3b)

π3(ψ1) = −F(∂x + g3)π
2(ψ1), (3.3c)

where F = F(z). Since π3(ψ1) = ψ1, working our way back through (3.3) we get

π3(ψ1) = −F 3(∂x + g3)(∂x + g2)(∂x + g1)ψ1 = F 3zψ1.

Thus, requiring π3(ψ1) = ψ1 implies that

F(z) = z−1/3.

Overall, the system (3.1) transformed by the generator π is

[∂x + π(g1)]π(ψ1) = −π(ψ2), (3.4a)

[∂x + π(g2)]π(ψ2) = −π(ψ3), (3.4b)

[∂x + π(g3)]π(ψ3) = −zπ(ψ1). (3.4c)

One can calculate immediately from (3.3a) and (3.1a) that

π(ψ1) = −z−1/3(∂x + g1)ψ1 = z−1/3ψ2. (3.5a)

Using π(gj ) = gj+1 and equations (3.4a), (3.5a), (3.1b) gives

π(ψ2) = −z−1/3(∂x + g2)ψ2 = z−1/3ψ3. (3.5b)

Finally, (3.4b), (3.5b) and (3.1c) yield

π(ψ3) = −z−1/3(∂x + g3)ψ3 = z2/3ψ1. (3.5c)

Collecting (3.5a)–(3.5c) gives the following gauge transformation

π(Ψ) = T0Ψ, T0 =

 0 z−1/3 0

0 0 z−1/3

z2/3 0 0


 . (3.6)

One can calculate the gauged Lax pair under the action of the element π by substituting
A1 = T0 into (2.6a) and (2.6b).

Now we turn our attention to the gauged system Φ—one can calculate the action of the
generators sj on Lj by expanding any one of (3.2), choosing (3.2a) we get

L1 = −∂3
x −

(
2

dg1

dx
+

dg2

dx
+ g3(g1 + g2) + g1g2

)
∂x

−
(

d2g1

dx2
+ g1

dg2

dx
+ (g2 + g3)

dg1

dx
+ g1g2g3

)
.

Similar calculations for the remaining factorizations (3.2b) yield

Lj = −∂3
x − Uj∂x − Vj , j = 1, 2, 3, (3.7a)

U1(g1, g2, g3) = 2
dg1

dx
+

dg2

dx
+ g3(g1 + g2) + g1g2, (3.7b)
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Table 1. Generators of Ã
(1)
2 on U1 and V1.

s1 s2 s0 π

U1 U1 U1 − α0
f0

2
df0
dx

U2

V1 V1 V1 + B(αj , fj ) V2

V1(g1, g2, g3) = d2g1

dx2
+ g1

dg2

dx
+ (g2 + g3)

dg1

dx
+ g1g2g3. (3.7c)

Up to t-dependent factors each Lj is the scattering operator of the Boussinesq equation,
see (1.3). Expressions for Uj and Vj , j = 2, 3, can be calculated using U1, V1 and the action
of the generator π . It transpires that U1 is invariant under the action of the generator s1, that is

s1(U1) = U1(s1(g1), s1(g2), s1(g3)) = U1.

Similarly one can show that V1 is also invariant under s1, s1(V1) = V1. The action of the
remaining generators of Ã

(1)
2 on U1 and V1 are presented in table 1; note that B is a polynomial

in αj , fj and the derivatives of fj . The invariance of U1 and V1 under the action of the
generators s1 and s2, together with the nontrivial action of s0, may be due to the choice of
factorization (3.2a); however this issue is not pursued any further.

Finally, we calculate the gauged system Φ and how the generator π acts on it. Consider
(1.6b) in the variables Φ = (φ1, φ2, φ3)

T = (ψ1, ψ1,x , ψ1,xx)
T . The first two equations of the

dynamical system Φx are given by ∂x(φ1) = φ2, ∂x(φ2) = φ3, together with the third

∂x(φ3) = ψ1,xxx = (−V1 − z)φ1 − U1φ2,

calculated using (3.7), gives the matrix system

Φx = PΦ, P =

 0 1 0

0 0 1
−V1 − z −U1 0


 . (3.8a)

We shall also require the gauge transformation g, relating the system for Ψ to the system for
Φ. Expressing φ2 and φ3 as linear combinations of ψj gives

φ2 = −ψ2 − g1ψ1, φ3 =
(

g2
1 − dg1

dx

)
ψ1 + (g1 + g2)ψ2 + ψ3.

We prefer to work with G = g−1, given by the matrix

Ψ = GΦ, G =

 1 0 0

−g1 −1 0
g1g2 + dg1

dx
g1 + g2 1


 . (3.8b)

One may recover (3.8a) from the gauge transformation. Differentiating (3.8b) and then
substituting L using (1.8), it is straightforward to show that

P = −G−1 dG
dx

+ G−1LG,

providing a useful check. From the gauge (3.8b), we have

ψ2 = −g1φ1 − φ2, ψ3 =
(

dg1

dx
+ g1g2

)
φ1 + (g1 + g2)φ2 + φ3,
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Ψx = LΨ Φx = PΦ�
G−1

�

π

[
π(Φ)

]
x

= π(P)π(Φ)�
[
π(Ψ)

]
x

= π(L)π(Ψ)
π(G)�

Figure 1. A commutative diagram for DTs.

together with (3.5a)–(3.5c), concludes this section with π(Φ),

π(φ1) = z−1/3ψ2 = −z−1/3g1φ1 − z−1/3φ2,

π(φ2) = z−1/3ψ2,x = −z−1/3 dg1

dx
φ1 − z−1/3g1φ2 − z−1/3φ3,

π(φ3) =
(

g2
2 − dg2

dx

)
π(ψ1) + (g2 + g3)π(ψ2) + π(ψ3),

= z−1/3

[
z − g1

(
g2

2 − dg2

dx
+

dg1

dx
+ g1g2

)]
φ1

+ z−1/3

[
dg2

dx
− g2

2 − g2
1 − g1g2

]
φ2 − z−1/3g1φ3.

Collecting the coefficients in the above equations into a matrix R, we can write

π(Φ) = RΦ.

The results of this section and section 2 provide us with the tools required to calculate
gauge transformations associated with various elements of Ã

(1)
2 .

4. Darboux transformations and Lax pairs

The motivation for working with the Φ variables becomes clear in this section. We gauge
away from the system for Ψ to the system for Φ, then apply the action of the generators of
Ã

(1)
2 on the Φ variables and finally gauge back to the original system. Overall, we expect to

obtain the corresponding action on Ψ, our original system. We make repeated use of (2.6)
to calculate gauged Lax pairs, as well as (2.8) to derive Xj below, see section 2 for details.
The idea of this method is best illustrated with the use of figure 1, where one may arrive at
the transformed Lax pair for Ψ, via Φ. As a check first we use the method outlined above to
rederive T0. Using figure 1, the results collected in table 1 and the reasoning above, we find
that this is in fact the case

π(Ψ) = π(G)π(Φ) = π(G)RΦ = π(G)RG−1Ψ = T0Ψ.

The invariance of Φ under the action of the generators s1 and s2 can be deduced immediately
from (3.8a), as si(U1) = U1 and si(V1) = V1, i = 1, 2, see table 1. Motivated by this fact, in
the next calculation before gauging back we act on the Φ variables with the generator s1 after
π . Overall we expect to recover the action of the element s1π on the Ψ variables. Using this
reasoning, and following figure 1, we get

s1π(Ψ) = s1π(G)s1π(Φ) = s1π(G)π(Φ) = s1π(G)RG−1Ψ.
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Overall we arrive at the DT

s1π(Ψ) = T1Ψ, (4.1a)

T1 = s1π(G)RG−1 =

 0 z−1/3 0

0 z−1/3α2/f2 z−1/3

z2/3 0 0


 , (4.1b)

whose elegant simplicity can only be accounted for by the structure of the system. A second
application of s1π on (4.1) yields

s1πs1π(Ψ) = s1π(T1)s1π(Ψ) = T2T1Ψ = X1Ψ, (4.2a)

where

T2 = s1π(T1) =




0 z−1/3 0

0 z−1/3 α0+α2
f0+α2/f2

z−1/3

z2/3 0 0


 , (4.2b)

and since X1 = T2T1, we get

X1 =




0 z−2/3α2/f2 z−2/3

z1/3 z−2/3 α2(α0+α2)

f2(f0+α2/f2)
z−2/3 α0+α2

(f0+α2/f2)

0 z1/3 0


 . (4.2c)

The entire process is repeated to derive the following DTs T3–T6:

T3 =




0 z−1/3 0

0 0 z−1/3

z2/3 0 z−1/3α0/f0


 ,

T4 = s2π(T3) =




0 z−1/3 0

0 0 z−1/3

z2/3 0 z−1/3 α1+α0
f1+α0/f0


 ,

T5 =




z−1/3α1/f1 z−1/3 0

0 0 z−1/3

z2/3 0 0


 ,

T6 = s0π(T5) =




z−1/3 α2+α1
f2+α1/f1

z−1/3 0

0 0 z−1/3

z2/3 0 0


 ,

which in turn can be multiplied together to give

X0 = T6T5 =




z−2/3 α1(α2+α1)

f1(f2+α1/f1)
z−2/3 α2+α1

(f2+α1/f1)
z−2/3

z1/3 0 0

z1/3α1/f1 z1/3 0


 ,

X2 = T4T3 =




0 0 z−2/3

z1/3 0 z−2/3α0/f0

z1/3 α1+α0
(f1+α0/f0)

z1/3 z−2/3 α0(α1+α0)

f0(f1+α0/f0)


 .

A summary of the DTs listed above is presented in tables 2 and 3.
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Table 2. T1, T3, T5 and their action on αj , vj .

Action s0π s1π s2π

DT T5 T1 T3


ṽ1

ṽ2

ṽ3







v1 + 1
3

v3 + 1
3

v2 − 2
3







v3 + 1
3

v2 + 1
3

v1 − 2
3







v2 + 1
3

v1 − 2
3

v3 + 1
3







α̃0

α̃1

α̃2







−α1

α1 + α2

α1 + α0







α2 + α1

−α2

α2 + α0







α0 + α1

α0 + α2

−α0




Table 3. X0, X1, X2 and their action on αj , vj .

Action s0πs0π s1πs1π s2πs2π

DT X0 X1 X2


ṽ1

ṽ2

ṽ3







v1 + 2
3

v2 − 1
3

v3 − 1
3







v1 − 1
3

v2 + 2
3

v3 − 1
3







v1 − 1
3

v2 − 1
3

v3 + 2
3







α̃0

α̃1

α̃2







α0 − 1

α1 + 1

α2







α0

α1 − 1

α2 + 1







α0 + 1

α1

α2 − 1




We close this section with the following remarks: the transformation matrix T0 is
independent of αj and fj , so that any element of Ã

(1)
2 acting after π will not alter T0,

specifically sj (T0) = T0—this turns out to be a crucial point in section 5.
The DTs Xj are in fact three versions of the same ST for the three-by-three Lax pair

(1.6) of the SP4 system. Roughly speaking a ST is a transformation of the eigenfunctions
which produce a shift in the parameters of the corresponding nonlinear ODE. Using (1.5)
and table 3, one can verify that X1 produces the following shift in the parameters of
PIV: η0(ζ ;α, β) → η0(ζ ;α − 2, β). The symmetric system implies that X2 and X0 produce
the same shift in the parameter space of η1 and η2, respectively. See [28] for an alternate
derivation of different STs of a two-by-two Lax pair for PIV.

5. The generators of Ã(1)
2

The action induced by the transformations T1–T6 is equivalent to certain combinations of
generators in definition 2.1. It is then quite natural to ask whether T1–T6 are themselves
composed of transformation matrices corresponding to each of the generators?

Theorem 5.1. Consider the Lax pair (1.6) with L and M given by (1.8). Then, the action
of the generators of the extended affine Weyl group Ã

(1)
2 = 〈π, s0, s1, s2〉, is realized by the

following transformations on ψj :

π(ψj ) =
{
z−1/3ψj+1,

z2/3ψ1,

j = 1, 2,

j = 3,
(5.1a)
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s0(ψj ) =

ψ1 +

α0

zf0
ψ3,

ψj ,

j = 1,

j �= 1,
(5.1b)

s1(ψj ) =

ψ2 +

α1

f1
ψ1,

ψj ,

j = 2,

j �= 2,
(5.1c)

s2(ψj ) =

ψ3 +

α2

f2
ψ2,

ψj ,

j = 3,

j �= 3.
(5.1d)

Proof. The matrix corresponding to the generator π is derived in section 3, here we
provide the details concerning the matrices associated with sj . Definition 2.1 dictates that the
generators of Ã

(1)
2 satisfy the fundamental relation

sjπ = πsj+1; (5.2)

note that this multiplication is in the group. We have derived transformations T1, T3, T5,
which give the corresponding action of the left-hand side of (5.2) on the Lax pair, see
section 4. The right-hand side of equation (5.2), together with (2.8) and the DTs derived
above, are all the ingredients required to find the matrices (5.1b)–(5.1d). Letting Yj represent
the action of the generator sj , then the action of the product πsj+1 on the Lax pair is given by
(2.8) to be

sj+1(T0)Yj+1.

However, as T0 is independent of fj and αj we have

sj+1(T0) = T0,

which, although subtle, is in fact crucial to the ensuing calculations. Substituting j = 1 into
(5.2) gives

s1π = πs2,

which in terms of matrix transformations acting on Ψ is given by

T1 = T0Y2,

solvable for Y2 by a simple matrix inversion. Overall we arrive at a matrix representing the
action of the generator s2

Y2 = T−1
0 T1 =


1 0 0

0 1 0
0 α2

f2
1


 .

Similarly, substituting j = 2, 0 into (5.2) and using T3 and T5 respectively gives

Y0 = T−1
0 T3 =


1 0 α0

zf0

0 1 0
0 0 1


 , Y1 = T−1

0 T5 =




1 0 0
α1
f1

1 0

0 0 1


 .

One can check that the matrices T0 and Yj give the correct action of the respective generator
on each entry of L and M by direct computation. Substituting (5.1) together with (1.8) into
(2.6) gives the action of the generators of Ã

(1)
2 defined by (2.2). �
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6. Conclusions

The DT has provided a method of deriving the gauge transformations (5.1) presented in
theorem 5.1, giving the action of the generators of Ã

(1)
2 on the level of its associated Lax pair.

The Lax pair for SP4 is the first member of a hierarchy presented in [34] corresponding to the
affine Weyl groups Ã

(1)
N , and consequently a lot of structure is shared by all of these Lax pairs.

Due to this structure, theorem 5.1 can be generalized to the remaining members of the Ã
(1)
N

hierarchy in a straightforward way; this matter has been comprehensively dealt with in [36],
and will be described in a forthcoming paper. It has recently been brought to the attention of
the author that the transformations derived in [36] have also been derived using a completely
different approach in [30]. Multiplying these gauge transformations has the added intricacy
given by (2.8), distinguishing them from the usual notion of a representation of a group.
The fact that the action of the generators as in (5.1) extends to an action of the entire group
Ã

(1)
2 can be explained in terms of non-Abelian 1-cocycle [5, 24]. Symbolically, however, the

answer is neatly encompassed by the intricate multiplication rule (2.8), which describes the
multiplication of any two elements—thus one is able to verify a finite number of examples. In
the process, we have obtained an alternate method of constructing new STs of the SP4 system
by multiplying various DTs together.
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